Working With Testplans

This chapter describes how to use testplans, which are named sequences of
tests that are executed as a group to test a specific device or unit under test.

For an overview of testplans, see Chapter 3 in the Getting Sarted book.




Working With Testplans
A Suggested Process for Creating a Testplan

A Suggested Processfor Creating a Testplan

Although we have no way of knowing about your specific hardware, we
recommend that you consider the following process when creating a
testplan.

Preparing to Writethe Testplan

1. Gather the testing specifications and requirements for the UUT (unit
under test).

You must thoroughly understand the UUT before you can test it
effectively. Thisincludes both the physical (such as pinouts) and
electrical characteristics of the device.

2. Plan thetests and the sequence in which they will be executed.

Determine which kinds of tests are needed in your testplan (including
tests for failure and exception handling, if desired). Determine the order
in which the tests should be executed. Given the above, determine where
to use test groups.

Tip: You may find it useful to draw a worksheet and make copies of it to
write on when planning tests. For example, the worksheet might briefly
describe the test, list the hardware resources needed, the test limits, any
setup or cleanup requirements, timing constraints, alist of input and




Working With Testplans
A Suggested Process for Creating a Testplan

output pins, and such. An example of atypical worksheet is shown
bel ow.

TEST NAME VoltZDMM

Measurement(s): (measure, limits)

10 volts  Limits: 9.9 - 10.1

Preconditions:
UUT Setup

None

Connections X .
V Src hi to DMM hi, V src lo to DMM lo

Power (volts, amps, pin)

N/A

Load (value, power, pin) N/A
Constraints:

Timing N/A

Test Sequencing N/A

Test Description:
Output 10 volts w/voltage source & measure w/DMM

Reuse:
Test Templates

Volt2DMM

Actions Switching, Configure V source, Measure DMM

Instruments: (name, settings) V source 10 volts

DMM volts

3. Plan the system resources for each pin on the UUT.

Using the information from the previous step, be sure your test system
has the hardware resources needed to do the tests. For example, do you
have enough power supplies, signal sources, and signal detectors? If not,
you must add hardware or find away to simplify the tests.

4. Plan and build the fixture or other means of connecting the test system’s
hardware with the UUT.

Pins on the UUT must be connected to the test system’s power supplies,
signal sources, and signal detectors. If you test various kinds of UUTs on
asingle test system, you may want to use an interchangeabl e fixture to
make the connections. Or, you need some type of cabling to make the
necessary connections.




Working With Testplans
A Suggested Process for Creating a Testplan

If you are using programmable switches, such as switching cards, to
make connections between resources and the UUT and you have
hardware handler software for those switches, you probably will want to
use the Switching Topology Editor to define your topology so you can
use switching actionsin your tests.

Writing the Testplan
1. Add tests and test groups to your testplan.

2. Copy and customize existing tests from libraries where possible. Where
needed, add the teststo test groups. If thereis no existing test to reuse,
create new tests from existing actionsin libraries where possible. If no
suitable actions exist from which you can create a new test, create new
actions, add them to an action library, and then create a new test from
them.

3. Tunethetestsfor performance and reliability.

This process can be as flexible asyou like. For example, you might begin

by creating actions, using them to create tests, and then using the tests to
create a testplan. But if it is more convenient—for example, if different
people are developing the actions and the testplan—you may want to
begin with an empty testplan and then expand it by adding tests as the
actions needed to create the tests become available.

For more information about tuning tests, including how to use
HP TestExec SL's built-in profiler, see “Optimizing the Throughput of
Testplans.”




Working With Testplans
To Create a Testplan

To Create a Testplan

Use the Test Executive's graphical toolsto create atestplan.

1. Click IE in the toolbar or choose File | New in the menu bar.
2. Choose Testplan as the type of document.
3. Choose the OK button.

4. Add one or more tests or test groups to the list shown in the left pane of
the Testplan Editor.

For information about adding tests and test groups, see “Using Tests &
Test Groups in Testplans.”

5. Click E in the toolbar or choose File | Save in the menu bar.
6. Enter a name for the testplan.

7. Choose the Save button.




Working With Testplans
To Specify Switching Topology Layers for a Testplan

To Specify Switching Topology Layersfor a
Testplan

The switching topology information for a specific testplan residesin three

files whose extensions are “.ust”. These files contain information about the
system, fixture, and UUT layers of switching topology. Given that one test
system can use many testplans, you must specify which switching topology
files to use for a given testplan.

Each test system has one system layer defined for it, and the name and
location of the file containing the system layer resides in HP TestExec SL's
initialization file. This is described under “System Setup” in Chapter 6.

Although you can locate the remaining two files, which contain the fixture
and UUT layers, wherever you like, it usually makes sense to put them with
other files used with the testplan. Then you must associate these two
topology files with the testplan.

Do the following to associate the files for the fixture and UUT layers with
the testplan:

1. Load the testplan.

2. Choose Options | Switching Topology Files in the menu bar.

3. Specify the locations of the files for the fixture and UUT layers.

For an overview of switching topology, see “About Switching Topology” in

Chapter 3 of th&etting Sarted book. For detailed information, see
Chapter 4 in this book.




Working With Testplans
Using Tests & Test Groups in Testplans

Note

Using Tests & Test Groupsin Testplans

The Testplan Editor window supports the various mechanisms that

Microsoft Windows provides to select multiple items; i.e., holding the Ctrl

key as you click multiple items; pressing and holding the mouse’s left button
and then dragging across multiple items; and clicking the first item in a
desired list, simultaneously pressing and holding the Ctrl and Shift keys, and
clicking the last item in the list. This means that many of the tasks described
for individual tests or test groups also can apply to multiple tests or test
groups. For example, if you select multiple tests or test groups, you can copy
or delete them as you would a single test or test group.

To Add a New Test/Test Group

1. Click the desired insertion point in a testplan shown in the left pane of the
Testplan Editor window.

The test or test group will be inserted immediately before the line
selected as the insertion point.

2. Do one of the following:
 Toinsert atest, cIick in the toolbar or choose Insert | Test in the
menu bar.

-0r -

O
« Toinsert atest group, cIickE in the toolbar or choose Insert | Test
Group in the menu bar.

3. Do the following in the right pane of the Testplan Editor window:

a. Specify a name for the test or test group.




Working With Testplans
Using Tests & Test Groups in Testplans

If you are using datalogging, be aware of the following restrictions on
the names of tests or test groups:

e If your log data is processed by HP Pushbutton Q-STATS, you
must not use slashes (/ or \) in test names.

« If your log data is processed by Q-STATS II, only the first forty
letters of the test name are significant.

b. Add any desired actions to the test or test group.

See “To Add an Action to a Test/Test Group” in Chapter 2 for more
information.

c. If you wish to use variants to provide multiple versions of the
parameters and limits, specify them.

See “To Add a Variant to a Testplan” for more information.

To Add an Existing Test

The easiest way to create a test is to reuse a similar test from a test library.

Note Be sure the search paths for test libraries are set up correctly or you may not
be able to find the test you want; see “Specifying the Search Path for
Libraries” in Chapter 5.

1. With a testplan loaded, choose an insertion point in the left pane of the
Testplan Editor window.

The test will be inserted immediately before the line selected as the
insertion point.

2. Click @ in the toolbar or choose Insert | Saved Test in the menu bar.

3. When the Test Libraries box appears, use it to find an existing test similar
to the one you need.




Working With Testplans
Using Tests & Test Groups in Testplans

For more information about using the Test Libraries box’s search
features, see “Searching for Items in a Library” in Chapter 5.

4. Make a copy of the test under a new, unigue name.

5. Modify the existing actions as needed.
For more information, see “To Specify Parameters for Actions in a Test/
Test Group” and “To Specify Limits for Actions in a Test/Test Group” in
Chapter 2.

6. Modify the existing parameters as needed.

For more information, see “Specifying Parameters for a Test/Test Group
in Chapter 2.

To Examine or Modify a Test/Test Group

1. Click a test or test group shown in the left pane of the Testplan Editor
window.

2. Use the right pane of the Testplan Editor window to examine or modify
the contents of the test or test group.

See Chapter 2 for information about specifying the contents of tests and test
groups.

ToMovea Test/Test Group

1. Click a test or test group shown in the left pane of the Testplan Editor
window.

2. ChooselE in the toolbar or Edit | Cut in the menu bar.
3. Click the desired new location for the test or test group.

If you click an existing line, the test or test group will be inserted before
that line.




Note

Note

Working With Testplans
Using Tests & Test Groups in Testplans

4. Choose @ in the toolbar or Edit | Paste in the menu bar.

If desired, you can move atest or test group from one testplan to another.
Follow the procedure described above, but run two instances of HP TestExec
SL. Cut the test or test group from atestplan in one instance and pasteit to a
testplan in the other instance.

To Copy a Test/Test Group

1. Click atest or test group shown in the left pane of the Testplan Editor
window.

| B
2. Choose in the toolbar or Edit | Copy in the menu bar.

3. Click the desired new location for the test or test group.

If you click an existing line, the test or test group will be inserted before
that line.

4. Choose @ in the toolbar or Edit | Paste in the menu bar.

If desired, you can copy atest or test group from one testplan to another.
Follow the procedure described above, but run two instances of HP TestExec
SL. Copy thetest or test group from atestplan in one instance and paste it to
atestplan in the other instance.

To Delete a Test/Test Group

1. Click atest or test group shown in the left pane of the Testplan Editor
window.

2. Choose Edit | Delete in the menu bar.

10



Working With Testplans
Controlling the Flow of Testing

Controlling the Flow of Testing
Using Flow Control Satements
Note Because you specify flow control statements in predefined, “fill in the

blanks” dialog boxes, you do not need a detailed understanding of their
syntax. If you make an error in entering the syntax, you will be prompted to
correct it.

11



Working With Testplans
Controlling the Flow of Testing

Which Flow Control Satements are Available?

HP TestExec SL supports the following statements that let you control the
flow of testing in atestplan.

if...then...else  Conditionally executes one or more statements in the
testplan, depending upon the value of an expression.

i f Expression then
[ st at enent s]
[el se
[ statenents]]
end if

Example:

if System RunCount = 0 then
test Testl

el se
test Test2

end if

for...next Repeats one or more statements in the testplan a
specified number of times. A negative value for St ep
causes the counter to decrement.

for Variable = Start to End step Step
[ st at enent s]
next

Example:

for Counter = 1 to 5 step 1
test Testl
next

12



for...

loop

in

Working With Testplans
Controlling the Flow of Testing

Repeats one or more statements in the testplan for each
value in a list of arguments.

for Variable in Goup
[ st at enent s]
next

Example:

for SequencelLocal s. MyVariable in C A B
I Assume that Sequencelocal s. MyVari abl e
I is passed as a paraneter to Testl
test Testl

next

Repeats one or more statements in the testplan until a
condition specified in an expression is satisfied.

| oop

[ st at enent s]

exit if Expression
end | oop

Example:

| oop

test Testl

test Test2

exit if SequencelLocal s. WVariable = 3
end | oop

13



Working With Testplans
Controlling the Flow of Testing

It also supports the miscellaneous syntax elements listed below, which you
can use with the flow control statements.

= (assignment operator)  Sets a variable to a value.

Vari abl e = Val ue

Example:

X=2
SequencelLocal s. MyVariable = 7

comment Non-executing line used to document a
testplan.

Example:

I This is a comment

else, end if, next, end Syntax elements used with the flow control

loop, exit if statements. Some of these are required and
others optionally extend the functionality of the
flow control statements.

What Arethe Rulesfor Using Flow Control Statements?

Keep the following in mind when using flow control statements:

< \Variable names can be either the name of the symbol by itself, such as
“A” or “MySymbol”, or include the name of an internal or external
symbol table, such as “SequenceLocals.MySymbol”.

Note: In most cases, variables in flow control statements should use
symbols in global symbol tables, such as SequencelLocals or System,
instead of using a symbol table whose scope is more restricted, such as
TestStepLocals or TestStepParms. This helps keep the symbol in scope
even if you reorganize the testplan.

« If you use a variable in a flow control statement but do not specify a
symbol table as part of the variable’s declaration, HP TestExec SL looks
for an existing symbol with the same name in the SequencelLocals
symbol table. If there is no existing symbol, one is automatically created
in Sequencelocals.

14



Note

Working With Testplans
Controlling the Flow of Testing

ToInsert a Flow Control Satement into a Testplan

1. Intheleft pane of the Testplan Editor window, choose the desired
insertion point in your testplan.

You can insert a statement on a blank line or into existing tests or
statements. If you click to highlight an existing test or statement, the new
statement will be inserted immediately preceding it.

2. Choose Insert | Other Statements in the menu bar and select the desired
kind of flow control statement.

3. Usetheright pane of the Testplan Editor window to enter any
declarations required for the specific kind of flow control statement you
chose.

Interacting with Flow Control Satements

The syntax for accessing a symbol in a symbol table from aflow control
statement is <symbol table. symbol>. If you do not specify <symbol table>,
its value defaults to Sequencel ocals.

If desired, you can directly manipulate the value of avariable in aflow

control statement or use the variable’s value to control some aspect of
testing. Then, examining or modifying the value of the symbol is the same as
examining or modifying the value of the variable in the testplan.

How is this useful? Suppose you were testing a module whose stimulus—an
input voltage, perhaps—needed to vary within predefined limits until the
module either passed or failed. You could:

1. Execute the test for that module in a “for...next” loop, such as:
for Voltage = 9.9 to 10.1 step 0.1
Modul eTest

next

2. In the test for the module, query the value of the counter variable and use
it to vary the stimulus.

15



Working With Testplans
Controlling the Flow of Testing

Modul eTest
...Get value of Voltage from synbol table
...Use value of Voltage to increnent input voltage

Other examples of using flow control statements with symbols include;

« Branching on passing or failing tests, which are described under “To
Branch on a Passing Test” and “To Branch on a Failing Test”

» Executing a test or test group only once per run of the testplan, which is
described under “To Execute a Test/Test Group Once Per Testplan Run”

Using Arithmetic Operatorsin Flow Control Statements

If desired, you can use the arithmetic operators for addition (+), subtraction
(-), multiplication (*), and division (/) in flow control statements. Also, you
can use parentheses to force the order of execution of those arithmetic
operators. Shown below is an example of a testplan that contains arithmetic
operators in flow control statements.

A=(2+3) * 4

B=A/5

if A- B = System RunCount then
test Testl

end if

To Branch on a Passing Test

You can use an “if...then” statement to examine the predefined TestStatus
symbol in the System symbol table and programmatically implement an “on
pass branch to” feature based on the results of a test; e.g.,

test Testl
if System TestStatus = 1 then
I If Testl passed run Test2

test Test2
end if
test Test3

1. Inthe left pane of the Testplan Editor window, click to select the line that
follows the test upon which you wish to branch.

16



Working With Testplans
Controlling the Flow of Testing

Tip: You can click the line that follows the test even if it is blank.

Choose Insert | Other Statements | If...Then in the menu bar.

With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.TestStatus = 1” for the value of

Expression in the right pane.

Place any tests, test groups, or statements you wish to have executed as
“branch on pass” within the boundaries of the “if...then” statement.

To Branch on a Failing Test

You can use an “if...then” statement to examine the predefined TestStatus
symbol in the System symbol table and programmatically implement an “on
fail branch to” feature based on the results of a test; e.g.,

test Testl
if System TestStatus = 0 then
' If Testl failed run Test2

test Test2
end if
test Test3

Or, you can use the graphical On Fail Branch To feature that is built into
each test.

Do either of the following:

1.

In the left pane of the Testplan Editor window, click to select the line that
follows the test upon which you wish to branch.

Tip: You can click the line that follows the test even if it is blank.

Choose Insert | Other Statements | If...Then in the menu bar.

. With the “if...then” statement selected in the left pane of the Testplan

Editor window, specify “System.TestStatus = 0” for the value of
Expression in the right pane.

17



Working With Testplans
Controlling the Flow of Testing

4,

4.

Place any tests, test groups, or statements you wish to have executed as
“branch on fail” within the boundaries of the “if...then” statement.

-0r -

In either the Main or Exception sequence, click a test in the left pane of
the Testplan Editor window.

Choose the Options tab in the right pane of the Testplan Editor window.

Click the arrow to the right of “On Fail Branch To” to invoke a list of
tests to which the current test can branch if a failure occurs.

The default value of “<Continue>" means that if the current test fails, the
next test in the list will be executed; i.e., there is no branching.

Click a test in the list to select it as the desired branch.

To Branch on an Exception

1.

In the left pane of the Testplan Editor window, click the arrow to the right
of “Testplan Sequence”.

Choose “Exception” in the list.
Add one or more tests to the list of tests for the Exception sequence.

This list of tests will be executed if an exception occurs when executing
the testplan.

Click the arrow to the right of “Testplan Sequence”.

Choose “Main” in the list to return to the Main—i.e., non-exception—
sequence of tests.

18



Working With Testplans
Controlling the Flow of Testing

To Execute a Test/Test Group Once Per Testplan Run

You can use an “if...then” statement to examine the predefined RunCount
symbol in the System symbol table and have specific tests, test groups, or
statements executed only once each time the testplan runs; e.g.,

test Testl
if System RunCount = 1 then
| Execute Test2 the first tinme the testplan is run

test Test?2
end if
test Test3

1. Inthe left pane of the Testplan Editor window, click to select a line where
you wish to insert an “if...then” statement to bound one or more tests, test
groups, or statements to be executed only once per testplan run.

2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.RunCount = 1" for the value of
Expression in the right pane.

4. Place the desired tests, test groups, or statements within the boundaries of
the “if...then” statement.

Tolgnorea Test

If desired, you can use the “Ignore this test” feature to ignore a test when the
testplan is run. Because no integrity checking is done on ignored tests, they
are useful when you wish to insert non-working tests during testplan
development and finish them later. Also, you can use ignored tests in
conjunction with variants so that one variant of a testplan executes different
tests than does another variant.

Test F"arametersl .-'lu:tiu:unsl Limitz | Options Du:u:umentatiu:unl

19



Note

Working With Testplans
Controlling the Flow of Testing

As shown below, an ignored test has a small cross beside it in the sequence
of tests.

F Testplan Editor

Testplan Sequence: I tain j

test Test
| The test below will be ignored

1. With atestplan loaded, in the left pane of the Testplan Editor window
click to select the test to be ignored.

If you are using variants, specify which variant to use before telling the Test
Executive to ignore atest. For more information about variants, see
“Testplan Variants” in Chapter 3 of thdsing HP TestExec SL book.

2. Choose the Options tab in the right pane of the Testplan Editor window.

3. Check the box labeled “Ignore this test”.

20



Working With Testplans
Running a Testplan

Running a Testplan

To Load a Testplan

Load atestplan so you can examine, modify, or run it.

|
1. Click in the toolbar or choose File | Open in the menu bar.

2. Typethe name of an exigting testplan file (.tpa) or use the graphical
browser to find an existing testplan.

3. Choose the Open button.

To Run a Testplan

Run atestplan to execute the testsiniit.
1. Load thetestplan, if needed.

2. (optional) If you wish to use atestplan variant other than the default,
Normal, do the following:

a. Click in the toolbar or choose Options | Testplan Optionsin the
menu bar.

b. Onthe Execution tab in the right pane of the Testplan Editor window,
choose the desired variant from the list under Testplan Variant.

Tip: The current variant is shown toward the right side of the status
bar at the bottom of the Test Executive environment.

c. Choose the OK button.

3. Choose E in the toolbar or choose Debug | Go in the menu bar.

21



Working With Testplans
Running a Testplan

Viewing What Happens asa Testplan Runs

Using the Report Window to Monitor Results

As shown below, the Report window lets you monitor the results as a
testplan runs.

Report !EI m

Begin Testplan =]
CAProgram Files\HP TestExec SLisamples\filterdemo\testplan\Filter.tpa
Test Variant: Normal

10430/96 10:58:50

s

Opening 10 Session

Opening 10 to Module

Clearing and Resetting the Module
Digitizing the Signal

Closing 10 to Module

Closing 10 Session

End of Testplan -
L M 4

Tip: You may want to minimize the Report window if you wish to examine a
report later but do not want the Report window appearing all the time.

To Enable/Disable the Report Window
« With a testplan loaded, cIi in the toolbar or choose
Window | Report in the menu bar.

A check mark appears to the left of Report in the upper region of the
Window menu when the Report window is enabled.

To Specify What Appearsin the Report Window
1. With a testplan loaded, cIi in the toolbar or choose
View | Testplan Options in the menu bar.

2. When the Options box appear, choose its Reporting tab.

22



Working With Testplans
Running a Testplan

3. Enable/disable any or al of the following check boxes under Report.

Passed tests  If enabled, information about tests that pass appears in
the Report window.

Failed tests If enabled, information about tests that fail appears in
the Report window.

Exceptions If enabled, information about exceptions that occur
while executing the testplan appears in the Report
window.

4. Choose the OK button.

Using the Trace Window to Monitor I/O Operations

As shown below, the Trace window lets you dynamically monitor 1/O
operations with hardware, such as instruments and switching modules, ina
test system as a testplan runs. Options associated with it let you specify
when to trace tests and how much information to gather during tracing.

Ylrace: =
YRunSequence

Scope: viOpenDefaultRM: Opened resource mgr session feed [65261)
MUX3: Closed element [row 0, column 0]

MUX3: Closed element [row 1, column 3]

MUX3: Closed element [row 1. column 1]

MUX3: Closed element [row 0, column 2]

Scope: Opened Resource 133dd08 [20176136), mode 0, timeout 0, session=
Scope: Set attribute VI_ATTR_TMO_VALUE on object 1a2b [6699] to value de
Scope: session deed [57069]): Clearing instrument

Scope: Session deed [57069] <="*RST"

Scope: Session deed [57069) <= "SYSTEM:HEADER OFF.*SRE 16"

Scope: Session deed [57069]) <=""AUTOSCALE;:ACQUIRE:TYPE NORMAL.CC

Trace information appears in named “streams” of information that identify
the information’s source. The name of the stream is followed by a semicolon
and the status message for that stream. In the example above, MUXS is the
name of a trace stream whose source is a hardware handler that controls a
switching module whose logical name is “MUX3". Status information from
MUX3, such as “Closed element [row 0, column 0]”, describes what is

23



Working With Testplans
Running a Testplan

happening at MUX3 as the testplan runs. “Scope” is another stream in the
example.

Using the Trace window is a three-step process. You must:

1. Enable the Trace window

2. Specify which tests to trace

3. Specify what kind of trace information to display for each traced test
To Enable/Disablethe Trace Window

* With a testplan loaded, choose Window | Trace in the menu bar.

As shown below, a check mark appears to the left of Trace in the upper
region of the Window menu when the Trace window is enabled.

el

I Beport
;v Trace
| Watch

To Specify Which Testsare Traced

1. With a testplan loaded, in the left pane of the Testplan Editor window
choose one or more tests to be traced.

2. Choose Debug | Set Trace in the menu bar.

As shown below, a trace icon appears to the left of traced tests.

P Testplan Editor

Tezstplan Sequence: I kain j

test Check Period

test Check. Rizetime

test Check Vaoltage Peak to Peak

24



Working With Testplans
Running a Testplan

Tip: A quick way to select all tests for tracing isto choose atest in the left
pane of the Testplan Editor window, type Ctrl-aor choose Edit | Select All in
the menu bar, and then choose Debug | Set Trace in the menu bar.

To Specify What Appears When Tests are Traced

1. With atestplan loaded, choose Debug | Trace Settings in the menu bar.

2. Enable/disable any or all of the following items under Trace Settings.
Each corresponds to a named stream of trace information.

User Trace If enabled, user-defined trace information appears for
actions in traced tests as the testplan runs. This is the
default stream for trace information sent from actions.

“User-defined trace information” means information
programmatically sent to the Trace window from
actions via API functions such as Ut aTr ace() . See
the Reference book for more information about APIs
used for tracing.

Test If enabled, test names appear for traced tests in the
Trace window as the testplan runs.

Test Details If enabled, detailed information about traced tests
appears in the Trace window as the testplan runs.

other Some actions, hardware handlers, or instrument
drivers add other stream names to the Trace settings
menu.

API functions such as Ut aTr aceEx() and

Ut aHMVbdTr aceEx() let you send trace
information in named streams from actions and
hardware handlers, respectively. See the Reference
book for more information about APIs used for tracing.

25



Working With Testplans
Running a Testplan

As shown below, a check mark appears next to the names of streams selected
for tracing.

Trace Settings * User Trace
Test
v Test Details

To Sop a Testplan

When you stop a testplan, execution halts when the current operation—such
as executing an action—nhas finished.

|
e Choose Debug | Stop or in the menu beE in the toolbar.

Note If you need to halt a testplan immediately, use the Abort command instead.

To Abort a Testplan

When you abort a testplan, execution halts immediately regardless of what
the testplan is doing.

» Choose Debug | Abort or in the menu bal_!_l in the toolbar.

Note If you wish to complete the current operation in progress—such as executing
an action—before halting, use the Stop command instead.

26



Working With Testplans
Other Tasks Associated with Testplans

Note

Other Tasks Associated with Testplans

Using Global Variablesin Testplans

Global variables|et actions share data across testsin atestplan. The scope of
aglobal variable can be;

e The entire testplan, which means the symbol is stored in an external
symbol table or in the System symbol table.

» Restricted to a single sequence in a testplan, which means the symbol is
stored in the Sequencelocals symbol table.

For detailed information about using symbols tables, see “Using Symbol
Tables” in Chapter 5.

By default, HP TestExec SL stores some global information in predefined
symbols in the System symbol table; see “Predefined Symbols” in
Chapter 5.

To Use a Global Variable Whose Scope isthe Testplan

1. With a testplan loaded, use the Symbol Tables box (View | Symbol
Tables) to declare a new variable in an external symbol table.

Note: If there is no existing external symbol table to hold your global
variable, use File | New and choose Symbol Table to create a new one.

Then choose the Add External Symbol Table button in the Symbol Tables
box to make the externally stored symbol visible to your testplan.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. In the list of actions, choose an action that has a parameter you wish to
associate with the global variable.

Example: Name of parameter is “dutvoltage” and Value is “5”.

27



Working With Testplans
Other Tasks Associated with Testplans

4. Double-click the Name column in the row that contains the parameter of
interest.

5. When the Edit Symbol box appears, enable Reference a Symbol if it is
not aready enabled.

6. Select the desired external symbol table from the Search list.

7. Usethe Reference list to select the name of the global variable.

8. Choose the OK button.

Example: Value of parameter “dutvoltage” now is
“@ExtSymTable.dutvoltage”; i.e., the value of the parameter is determined

by the value of variable “dutvoltage” in the ExtSymTable symbol table.

To Use a Global Variable Whose Scope is a Sequence

1. With a testplan loaded, in the left pane of the Testplan Editor window
choose a sequence—Main or Exception—in which to use the global
variable.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. In the list of actions, choose an action that has a parameter you wish to
associate with the global variable.

Example: Name of parameter is “dutvoltage” and Value is “5”.
4. Double-click the Name of the parameter.

5. When the Edit Symbol box appears, enable Reference a Symbol if it is
not already enabled.

6. Select the Sequencelocals symbol table from the Search list.
7. Use the Reference list to select the name of the global variable.

8. Choose the OK button.

28



Note

Working With Testplans
Other Tasks Associated with Testplans

Example: Value of parameter “dutvoltage” now is
“@Sequencelocals.dutvoltage”; i.e., the value of the parameter is
determined by the value of variable “dutvoltage” in the Sequencelocals
symbol table.

To Specify the Global Optionsfor a Testplan

1. With a testplan loaded, cIi in the toolbar or choose

Options | Testplan Options in the menu bar.

2. Use the features on the various tabs in the Testplan Options box to
specify the global options for the current testplan.

To Specify Which Topology Filesto Use

1. With a testplan loaded, choose Options | Switching Topology Files in the
menu bar.

2. Type the name of a topology file for the fixture layer or click the
associated Browse button and use the graphical browser to choose a file.

3. Type the name of a topology file for the UUT layer or click the associated
Browse button and use the graphical browser to choose a file.

4. Choose the OK button.

Topology files have a “.ust” extension; e.g., “fixturel.ust”.

Using Testplans & UUTswith an Operator Interface

To Register a Testplan for an Operator Interface

A typical operator interface lets production operators choose from a list of
testplans to run. You must manually edit file “tstexcsl.ini” to specify which

testplans appear in the list, which variant is chosen by default, and a brief
description of what the testplan does.

29



Note

Note

Working With Testplans
Other Tasks Associated with Testplans

1. Open file “tstexcsl.ini” (in directory “KdP TestExec SL home>\bin”) with
a text editor, such as WordPad in its text mode.

2. Add entries for one or more testplans to the [Testplan Reg] section of the
file.

The file contains descriptive comments about the formats of these entries.

3. Save the updated file and exit the editor.

To Register aUUT for an Operator Interface

Some operator interfaces let production operators use a bar code reader to
scan the information for a UUT, and then parse the bar code to automatically
load the appropriate testplan. If your operator interface supports this feature,
you must manually edit file “tstexcsl.ini” to specify the association between
UUTs and testplans.

1. Open file “tstexcsl.ini” (in directory “HP TestExec SL home>\bin”) with
a text editor, such as WordPad in its text mode.

2. Add entries for one or more UUTs to the [UUT Reg] section of the file.
The file contains descriptive comments about the formats of these entries.
3. Save the updated file and exit the editor.

Using Variantsin Testplans

Variants let you create named variations on the contents of a testplan. After
you create a testplan’s variants, you can specify the parameters and limits for
the tests and test groups in each variant. Because they let yaneuse

testplan witm different sets of test limits and parameters, variants are useful
where one UUT is very similar to another except for slightly different values
for its test limits or parameters.

30



Working With Testplans
Other Tasks Associated with Testplans

To Add a Variant to a Testplan

1. With atestplan loaded, choose Options | Variantsin the menu bar.
2. When the Test Variants box appears, choose the Add button.

3. Inthe Add Variant box, type a name for the new variant in the field under
New Variant.

4. Choose atemplate for the new variant from the list of existing variants
shown under Based On.

Tip: Base the new variant on whichever existing variant is most like the
new one.

5. Choose the OK button.

For information about specifying the contents of variants after you have

created them, see “Specifying Variations on Tests/Test Groups When Using
Variants” in Chapter 2.

To Rename a Variant in a Testplan

1. With a testplan loaded, choose Options | Variants in the menu bar.

2. When the Test Variants box appears, click the name of an existing variant
in the list under Current Variants.

3. Choose the Rename button.

4. In the Rename Variant box, choose the name of an existing variant from
the list shown under Variant Name.

5. Type a new hame for the variant in the field under New Name.
6. Choose the OK button.

To Delete a Variant from a Testplan

1. With a testplan loaded, choose Options | Variants in the menu bar.

31



Working With Testplans
Other Tasks Associated with Testplans

2. When the Test Variants box appears, click the name of an existing variant
in the list under Current Variants.

Note: You cannot delete Normal, which is the default variant.
3. Choose the Delete button.
4, Choose the OK button.

To Examine All the Variantsfor a Testplan

You can examine all the variants of atestplan while globally viewing or
modifying the test limits; see “To View the Limits for Tests in a Testplan” in
Chapter 2.

32



Working With Testplans
Examining Testplans & System Information

Examining Testplans & System Information

Overview

The Listing window letsyou view or print information about various aspects
of your testplans and hardware controlled by your test system. The example
below shows how you can view a descriptive listing of the testsin atestplan.

E= Filter.tpa H=l Q3

Listing topic: TESTS

Testplan file: C:\Program FilesWHP TestExec SLYsSamplesifilterdemo’ testplany
...Filter.tpa

Froduced at: 12/5/1996 13:01:18

TestiGrp: testgroup I/0 Configure

Setup Lction: Configure IQ Session

Switching: [+15 P5_+]
[-15 DC/DC Converter — Input F3 -]
[GND P3_-]
[GHND DC/DC Converter + Input F3 4]
At Test Setup: Connect Paths
At Test Cleanup: Disconnect Paths

LR E R E R R R AR AR AR R ARt

TestGrp: testgroup Time Domain
Setup Lotion: Initialize module
Variant: Normal
Parm: module handle WValue: [@Sequencelocals.Scope

Which Kinds of Information Can | Examine?

The categories of information you can examine or print in the Listing
window include:

Actions Lists detailed information about actions in the current
testplan, including action names, source file names, and
routine names

Symbol tables  Liststhe symbols used in symbol tablesin the current
testplan.

33



Working With Testplans
Examining Testplans & System Information

Testplan Audit

Testplan

Tests

Adjacencies

Node Labels

Instruments

Switches

Fixture Layer

System Layer

UUT Layer

Lists auditing information for the current testplan

Lists detailed information about the current testplan,
including test groups, tests, actions, variants, and run
options.

Lists detailed information about tests in the current
testplan, including test names, actions, variants, source
files names, and routine names.

Lists all topology adjacencies—i.e., nodes separated by
a switching element—for the current testplan, including
preferred node names, adjacency names, module names,
and switching elements and their positions.

Lists all node labels for the current testplan, including
label names, preferred node names that are aliased,
descriptions, and keywords.

Lists information about instruments controlled by the
current testplan.

Lists information about switching hardware controlled
by the current testplan.

Lists topology information about connections on the
fixture topology layer, which includes aliases, wires,
and modules.

Lists topology information about connections on the
system topology layer, which includes aliases, wires,
and modules.

Lists topology information about connections on the
UUT topology layer, which includes aliases, wires, and
modules.

ToList Testplans & System Information

1. Choose View | Listing in the menu bar.

34



Working With Testplans
Examining Testplans & System Information

2. Choose which type of listing to view.

To Print Listings of Testplans & System Infor mation

1
2

w

4

5

. Choose View | Listing in the menu bar.

. Choose which type of listing to view.

. Click % in the toolbar or choose File | Print in the menu bar.

. Set the printing options as desired.

. Choose the OK button.

Tip: You can use File | Print Preview in the menu bar to see how alisting will
look before printing it.

To Find Specific Text in Testplans & Listings

If desired, you can search testplans or any of the various listings of system
information for a specific word or phrase.

1

Do either of the following:

If you wish to search a testplan, with a testplan loaded click in the left
pane of the Testplan Editor window.

If you wish to search a listing, generate the listing as described earlier
in “To List Testplans & System Information.”

ClickE in the toolbar or choose Edit | Find in the menu bar.

In the “Find what” field, specify the text you wish to search for.

Tip: Check the “Match case” box if you wish to search for exactly the
same pattern of upper and lowercase characters specified in the “Find
what” field.

Choose the Find Next button.

35



Working With Testplans
Debugging Testplans

Debugging Testplans

Asyou develop testplans and their components you need to verify their
operation and any fix problems that arise. HP TestExec SL's debug features
let you interact with testplans and their components as they execute.

If you are using C/C++ to develop actions, also see “Debugging C/C++
Actions” in Chapter 3.

Using Interactive Controls & Flags

Once started, a testplan normally runs from beginning to end, executing tests
in the order in which they appear in it. However, the Test Executive provides
several features you can use to modify the running of a testplan. These
features can be particularly useful when you are debugging a testplan or test,
or when you need to stop or pause the testplan at a specific place while
troubleshooting a UUT.

There are two main kinds of features you can use to control testplans:

Interactive  These are features such as Stop/Continue, Restart, Step,
Controls Stop, and Pause. They are interactive insofar as using them
causes an immediate response.

Flags You can set “flags”—i.e., markers—in the testplan. A flag is
acted upon if it is encountered as the testplan runs. You can
set a flag that marks a test to be stopped upon, skipped,
traced, or have its actions single-stepped. Also, you can
clear an individual flag or clear all flags for selected tests.

36



Working With Testplans
Debugging Testplans

As shown below, these features appear as options under the Debug menu in
the menu bar.

Options Window Help

Go F5 -«

Bestart Shift+F5

Step F10 Interactive
Stop F7 controls
Pausze F& R

Set Breakpoint F9 -

Clear Breakpoint  Shift+F3

Set Skip Ctrl+k

Clear Skip

Set Trace Flags
Clear Trace

Set Action S5tep F11

Clear Action S5tep  Shift+F11

Clear Debug Items -

When you use the Debug menu’s options to set a flag for a test in a testplan,
one of the icons shown below appears to the left of the test.

Thisicon... Means that...
A breakpoint has been set for the test, which means the
@ testplan will execute until the breakpoint is encountered,

and then stop executing immediately before the marked
test.

Items marked in the testplan will be skipped; i.e., the

@ testplan will not execute the marked items.
Be aware that skipping a test is not the same as ignoring it
(see “Ignoring a Test” earlier in this chapter); the overall
integrity of skipped tests is checked, but that of ignored
tests is not.

' The test will be traced, which means that status information
will appear in the Trace window as the test executes.

37



Working With Testplans
Debugging Testplans

Actions in the marked test will be single-stepped. The
h testplan will pause at the first action in the test, and you can
use either the Step command in the Debug menu or the

s | icon in the toolbar to execute the test’s actions one at
atime.

A combination of the trace and single-step icons; i.e., the
@ marked test will be traced as you single-step through it.

As ashortcut when setting flags, you can select atest in the left pane of the
Testplan Editor window and then right-click to invoke the menu shown
below.

Testplan Sequence: IMain LI Tes

testgroup 140 Configure Sur
testgroup Time Domain
test Check Period
test Check Rizetime
*» test Check “olage Peak to Peak
[  test Check Frequency

test Check 0w

Set Breakpoint Ctrl+T
Clear Breakpoint

Set Skip Crrl+k
Clear Skip

Set Trace

end testgroup
end testgroup

Clear Trace

Set Action Step
Clear Action S5tep
Clear Debug Items

Select All Chrl+A
Tip: If desired, you can select multiple testsin atestplan and simultaneously
set or clear all of their flags.

Caution If you add flags and then save atestplan, the flags are saved with it. Be sure
to remove flags from testplans before releasing them to production. For

38



Working With Testplans
Debugging Testplans

example, a breakpoint flag can cause the testplan to stop executing
prematurely and leave the operator interface “hung.”

Single-Sepping in a Testplan

Single-stepping in a testplan lets you pause as needed to verify that tests and
actions are working correctly.

Single-Sepping Through Tests

Overview

If desired, you can single-step through the tests in a testplan. Each time you
single-step, the testplan executes one test, halts, and then displays a pointer
icon that identifies the next test to be executed.

In the example below, test ProfilerDemoTestl has been executed and the
testplan has halted pending execution of test ProfilerDemoTest2.

P Testplan Editor

Testplan Sequence: IMain ;I

test ProfilerDemaT estl
[ ezt ProfilerDemoT est?

tezt ProfilerDemoT est3
tezst ProfilerDemaT estd

To Single-Sep Through the Testsin a Testplan

*
« With a testplan loaded, cIi(JE in the toolbar or choose Debug | Step
Test in the menu bar.

To Cancel Single-Stepping Through the Testsin a Testplan

|
» While single-stepping through a testplan, CL-_— in the toolbar or
choose Debug | Stop in the menu bar.

39



Working With Testplans
Debugging Testplans

Single-Sepping Through Actions

Overview

Each test in atestplan contains one or more actions. |f desired, you can
single-step through the actions. This can be useful if you wish to verify the
results of each action as atest executes. For example, you could connect test
eguipment to the UUT, pause on a specific action, and verify that the action
is interacting correctly with the UUT.

When the testplan is paused while single-stepping through actions, the Test
Debug Information box shown below appears.

Test Debug Information E

Test Mame: ProfilerDemoTest2

Entry Execute
Test Operation Mames PrafilerDema
Test Parameters Courit: 10
Test Locals

{ ProfilerDemo

Continue Step

Here, the test’'s name is ProfileDemoTest2 and it contains an execute action
named ProfilerDemo that uses a parameter named Count whose value is 10.
The test is paused on ProfilerDemo.

To Single-Sep Through Actions

1. With a testplan loaded, in the left pane of the Testplan Editor window
click a test whose actions you wish to step through one at a time.

2. Choose Debug | Set Action Step in the menu bar or right-click and
choose Set Action Setup from the menu that appears.

40



Working With Testplans
Debugging Testplans

3. Runthetestplan as usual.

4. When the test pauses on an action and the Test Debug |nformation box
appears, make debugging measurements or select aniteminthelist under
Test Operation Names and examine its characteristics.

5. Do one of the following:

» To single-step to the next action in the test (if the test contains more
than one action), choose the Step button.

-0r -

» To proceed to the next test without single-stepping through any more
actions in the current test, choose the Continue button.

-0r -

. u .
» To stop after executing the current test, chcl-_— in the toolbar
and then choose the Continue button.

6. When you have finished single-stepping, clear the flags used to mark the
tests.

Using the Watch Window to Aid Debugging

Overview

Many programming environments provide a “watch” feature that lets you
examine the values of variables and expressions while debugging programs.
In a similar fashion, HP TestExec SL lets you specify items such as symbols,
instrumentd, or switching paths to be watched when debugging a testplan.
You use the Insert menu to place these items into the Watch window, as

1. You can watch instruments only when using specific driver software from
Hewlett-Packard.

41



Note

Working With Testplans
Debugging Testplans

shown below, and then examine them when the testplan is paused, such as
while single-stepping through actions.

m ¥iew Debug Option: Window Help

I Test Ctr+T . E =1
3 Test Group Ctrl+G |—| ®| | Iﬁl | |
Saved Test... I Fiter.tpa =1 E3
¥ —_————
Other Statements ‘System: TestStatus =0
Ahas Ctal+L
wire Chrlew
Module Chrl+M
Instrument. ..
Switching Hode. ..
All Switching Hodes

The name of the symbol table in which asymbol residesis prefixed to the

name of the symbol. In the example above, the symbol named TestStatus

appears in the symbol table named System—i.e., System: TestStatus—and
its current value is zero.

To ensure that testplans execute rapidly, the Watch window is updated only
when testplan execution pauses or stops.

To Insert a Symbol into the Watch Window

1. With a testplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

If the Watch window is not visible, choose Window | Watch. If the Watch
window is visible but inactive, click its border to make it active.

2. Choose Insert | Symbols in the menu bar.
3. When the Select Symbol to Watch box appears, do the following in it:

a. Choose a symbol table from the list under Available Tables.

42



Note

Working With Testplans
Debugging Testplans
b. Choose a symbol from the list under Available Symboals.
c. Choose the OK button.

For more information about symbol tables, see “Using Symbol Tables” in
Chapter 5.

To Insert a Switching Node into the Watch Window

1. With a testplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

If the Watch window is not visible, choose Window | Watch. If the Watch
window is visible but inactive, clicks its border to make it active.

2. Choose Insert | Switching Node in the menu bar.

Tip: As a shortcut when setting watches on all switching nodes, choose
Insert | All Switching Nodes.

3. When the Select Switching Node box appears, do the following in it:
a. Choose a node from the list.

Tip: If desired, you reduce the number of nodes that appear in the list
by choosing a Filter from the list.

Tip: If desired, you can sort the list of nodes by selecting the Sort
Node Names check box.

b. Choose the OK button.

For more information about switching nodes, see “About Switching
Topology” in Chapter 3 of th&etting Sarted book.

Tolnsert an Instrument into the Watch Window

This feature is enabled only when using specific instrument drivers provided
by Hewlett-Packard.

43



Working With Testplans
Debugging Testplans

1. With atestplan loaded, make sure the Watch window is active; i.e,, its
border is highlighted.

If the Watch window is not visible, choose Window | Watch. If the Watch
window is visible but inactive, click its border to make it active.

2. Choose Insert | Instrument in the menu bar.

3. When the Select Instrument box appears, do the following in it:
a Choose an instrument from the list.
b. Choose the OK button.

To Remove an Item from the Watch Window

1. Inthe Watch window, select the item to be removed.

If the Watch window is not visible, choose Window | Watch. If the Watch
window is visible but inactive, clicks its border to make it active.

2. Choose Edit | Delete in the menu bar.

44



Working With Testplans
Fine-Tuning Testplans

Fine-Tuning Testplans

A testplan isonly as good asthe testsin it. Good tests are fast, reliable, and
accurate. After you have your tests and testplan running, you may want to
consider taking the steps described in the following topics to fine-tune your
results.

Optimizing the Reliability of Testplans

Several waysto improve the reliability of your testplans are:

Debug known problems in actions and tests as needed.

For example, you can use the debugging features of the language used to
create actions to debug actions. And you can use features in the Test
Executive that control the running of testplans to pause on a test, skip a
test, and such while debugging tests.

Run testplans for a prolonged period, such as overnight, to verify the
reliability of the tests in therh.

Tip: To run repetitively a testplan, use the “Loop for count” or “Loop for
time” options under Sequencer Repeat on the Execution tab in the
Testplan Options box (Options | Testplan Options).

Sequencer Repeat

O Loop fFor time [d:hom:g] | 0-00-00:-00

Run testplans with datalogging on and examine the results for
consistency.

1. If you do this, you may want to turn off datalogging to prevent log records
from potentially filling your hard disk.

45



Working With Testplans
Fine-Tuning Testplans

For example, you might turn on datalogging and run the testplan to
collect dataabout asingle UUT or agroup of UUTSs. If the data are
inconsistent, try to identify which test(s) is the problem and then fix it.

Deliberately stress your testplan by introducing conditions that can cause
exceptions, and add fixes as needed.

For example, you might see what happens if an instrument “times out”
without returning a reading. Or, you might deliberately test UUTs whose
performance is grossly outside the normal limits.

Optimizing the Throughput of Testplans

Suggested Waysto Make Testplans Run Faster

Some ways in which you can make your testplans execute faster are:

Use test groups to do slow actions outside of tests or to eliminate
redundant tasks.

If you have a group of tests whose setup/cleanup needs are alike, insert
those tasks once, at the beginning of a test group that includes the group
of tests, instead of inside each test. An example of this might be
initializing power supplies or setting up instruments that require similar
setups for more than one test. If several tests require positive sources, do
the tests as a group. Or, if several tests require the same UUT setting, do
the tests as a group.

Use triggers for fast synchronization of tests.

For example, avoid synchronizing to slow cycle waveforms. Also, avoid
controller-induced test delays.

Find faster ways to do tests.
For example, use a DMM instead of a slower digitizer.

Use HP TestExec SL’s profiler feature (described below) to optimize the
actions inside tests in a testplan.

46



Note

Working With Testplans
Fine-Tuning Testplans

Using the Profiler to Optimize Testplans

HP TestExec SL includes a profiler you can use to see how long each action
or test group in atestplan takes to execute. Once you know how long each
action or test group takes to execute, you can decide where to begin the
“tuning” process, and monitor any improvements you make.

After enabling the profiler, you run a testplan to collect data, and then either

view Pareto charts directly in HP TestExec SL or use a financial spreadsheet
program to further analyze the data. As shown below, the profiler display in

HP TestExec SL lists actions or test groups in order from slowest to fastest,

and shows how long each took to complete.

?_ﬁlﬁclion Sum Pareto List [_ o] =]

Action Sum Pareto List

Profiler Demo 0.035

AddTwolntegers 0.0m

n L] L] L] L] L]
0.000 0.010 0.020 0.030 0.040 0.050

Time [in seconds)
Testplan Name: C:ATemp\Goldibin\ProfilerDemo.tpa
Current Testplan Variant: Normal
Current Date and Time: 08{23{96 06:56:26

Each time you run the testplan, profiler data from the previous run is
discarded. If a testplan aborts, its profiler data is lost. Also, the profiler is
automatically turned off whenever you exit a testplan.

Because the profiler can significantly degrade HP TestExec SL's
performance, you probably will not want to run it during production testing.

To Set Up the Profiler

Before you can use the profiler, you must enabile it.

1. Choose Options | Testplan Options in the menu bar.
2. In the Testplan Options box, choose the Profiler tab.

3. Enable the Enable Profiler check box.

47



Working With Testplans
Fine-Tuning Testplans

4. If, besides viewing the profiler datain HP TestExec SL, you want to save
the data in a tab-delimited file for subsequent analysis, such asin a
spreadsheet, do the following:

a. Select the Save to File check box.

b. Either type the name of afilein the data entry field or choose the
Browse button and use the graphical browser to specify anamefor the
file in which the profiling data will be saved.

5. Choose the OK button.

To Run the Profiler

< With the profiler enabled, run the testplan as usual.

As the testplan runs with the profiler enabled, HP TestExec SL collects
data about the testplan.

To View Profiler Resultsin HP TestExec SL

1. After running the testplan with the profiler enabled to collect data,
choose View | Profiler Results in the menu bar.

2. Choose how you would like to see the data displayed.

Formats for displaying profiler data in Pareto charts include:

Sum of Action Execution Times Total time that actions in the
testplan took to execute. If an
action is used more than once, this
will be its accumulated time.

Average Action Execution Times  Average time that actions in the
testplan took to execute. If an
action is used more than once, this
will be the arithmetic mean of each
execution time.

48



Working With Testplans
Fine-Tuning Testplans

Sum of Test Execution Times Total time that tests in the testplan
took to execute.

Average of Test Execution Times Average time that tests in the
testplan took to execute.

3. If you wish to limit the amount of data that appears, specify an aternate
value for Maximum Number of Itemsto Display.

4. Choose the OK button.

Tip: If desired, you can simultaneously view other types of Pareto charts
by choosing Profiler Pareto from the menu bar and choosing another type
when the viewer is active.

Tip: If desired, you can use File | Print Graph to print the results when the
viewer is active.

To View Profiler Resultsin a Spreadsheet

When you use the profiler’s Write to File option and specify a file name,
data is saved in a tab-delimited format suitable for examination with a
spreadsheet.

Hewlett-Packard also provides a worksheet (“profile.xIs”) and an add-in
(“profile.xla”) you can use with Microsoft Excel as the starting point in
examining the data file’s contents. These files are located in directory
“<HP TestExec S home>\samples\excelmacrosAs shown below, loading

49



Working With Testplans
Fine-Tuning Testplans

either of these files adds a Profiler option and related menu items to Excel’'s
menu bar.

-
Toolz Data Window

; Load Haw Data r

= Test Pareto
Action Sum Pareto

L Action 5td Dev Pareto
Action Average Pareto
Action Min Pareto
Action Max Pareto
Action Occurrence Pareto

50



Working With Testplans
Moving a Testplan

Moving a Testplan

You may want to develop testplans on a central development system that is
fully configured even if you intend to use them elsewhere. That way, not
every test system needs afull set of hardware resources for compatibility;
i.e., each destination system needs only the subset of the devel opment
system’s resources that are required to run a specific testplan.

Once you have developed and debugged a new testplan on the devel opment
system, you probably will want to release it to your production environment.

For example, if you intend to run the testplan on more than one test system,
you must copy the appropriate files to other systems. Also, you probably

will want to make a backup copy of the completed testplan “just in case.”

Do the following to move a testplan from your development system to
another syster:

Be sure the destination system has all the hardware resources needed to
run the testplan.

Copy the testplan file—i.e.téstplan_name.tpa’—to the destination
system.

Be sure all the files used by actions in your testplan exist on the
destination system. These include “*.umd” files and executable libraries.

Tip: You can use View | Listing | Actions to list the contents of actions in
a testplan. Or, you can use an audit listing to show all the files used by a
testplan.

Copy the topology files for the fixture and UUT layers (“fixture.ust” and
“uut.ust” files or equivalent) to the destination system.

If external symbol tables are associated with the testplan, copy them
(“*.sym” files) to the destination system.

1. Thedirectory structure on the destination system can be different from the
directory structure on the development system.

51



Caution

Working With Testplans
Moving a Testplan

« \erify that the datalogging options are the same across the systems:

Be sure the [Data Log] section in the “tstexcsl.ini” file on the
destination system identifies the format and definition files you wish
to use when datalogging.

Be sure the datalogging options for the testplan (Options | Testplan
Options | Reporting) reflect the settings you wish to use on the
destination system.

Be sure the destination system's topology file for the system layer
(“system.ust”) is the same as or a superset of the file on the
development system.

Be sure to remove any flags, such as skipped tests or breakpoints, if
you are moving the testplan to a system used for production testing.

Flags left in the testplan can cause the operator interface to behave
incorrectly. For example, a breakpoint flag can cause the testplan to stop
executing prematurely and leave the operator interface “hung.”

For more information about flags, see “Using Interactive Controls &
Flags.”

For suggestions about setting up library search paths to optimize the
portability of testplans, see “Using Search Paths to Improve Testplan
Portability” in Chapter 5.

52



	1 Working With Testplans
	A Suggested Process for Creating a Testplan
	Preparing to Write the Testplan
	Writing the Testplan

	To Create a Testplan
	To Specify Switching Topology Layers for a Testpla...
	Using Tests & Test Groups in Testplans
	To Add a New Test/Test Group
	To Add an Existing Test
	To Examine or Modify a Test/Test Group
	To Move a Test/Test Group
	To Copy a Test/Test Group
	To Delete a Test/Test Group

	Controlling the Flow of Testing
	Using Flow Control Statements
	Which Flow Control Statements are Available?
	What Are the Rules for Using Flow Control Statemen...
	To Insert a Flow Control Statement into a Testplan...
	Interacting with Flow Control Statements
	Using Arithmetic Operators in Flow Control Stateme...

	To Branch on a Passing Test
	To Branch on a Failing Test
	To Branch on an Exception
	To Execute a Test/Test Group Once Per Testplan Run...
	To Ignore a Test

	Running a Testplan
	To Load a Testplan
	To Run a Testplan
	Viewing What Happens as a Testplan Runs
	Using the Report Window to Monitor Results
	To Enable/Disable the Report Window
	To Specify What Appears in the Report Window

	Using the Trace Window to Monitor I/O Operations
	To Enable/Disable the Trace Window
	To Specify Which Tests are Traced
	To Specify What Appears When Tests are Traced


	To Stop a Testplan
	To Abort a Testplan

	Other Tasks Associated with Testplans
	Using Global Variables in Testplans
	To Use a Global Variable Whose Scope is the Testpl...
	To Use a Global Variable Whose Scope is a Sequence...

	To Specify the Global Options for a Testplan
	To Specify Which Topology Files to Use
	Using Testplans & UUTs with an Operator Interface
	To Register a Testplan for an Operator Interface
	To Register a UUT for an Operator Interface

	Using Variants in Testplans
	To Add a Variant to a Testplan
	To Rename a Variant in a Testplan
	To Delete a Variant from a Testplan
	To Examine All the Variants for a Testplan


	Examining Testplans & System Information
	Overview
	Which Kinds of Information Can I Examine?
	To List Testplans & System Information
	To Print Listings of Testplans & System Informatio...
	To Find Specific Text in Testplans & Listings

	Debugging Testplans
	Using Interactive Controls & Flags
	Single-Stepping in a Testplan
	Single-Stepping Through Tests
	Overview
	To Single�Step Through the Tests in a Testplan
	To Cancel Single�Stepping Through the Tests in a T...

	Single-Stepping Through Actions
	Overview
	To Single�Step Through Actions


	Using the Watch Window to Aid Debugging
	Overview
	To Insert a Symbol into the Watch Window
	To Insert a Switching Node into the Watch Window
	To Insert an Instrument into the Watch Window
	To Remove an Item from the Watch Window


	Fine�Tuning Testplans
	Optimizing the Reliability of Testplans
	Optimizing the Throughput of Testplans
	Suggested Ways to Make Testplans Run Faster
	Using the Profiler to Optimize Testplans
	To Set Up the Profiler
	To Run the Profiler
	To View Profiler Results in HP�TestExec SL
	To View Profiler Results in a Spreadsheet



	Moving a Testplan

	2 Working With Tests & Test Groups
	Specifying Parameters for a Test/Test Group
	To Add a Parameter to a Test/Test Group
	Modifying a Parameter for a Test/Test Group
	To Remove a Parameter from a Test/Test Group

	Specifying Actions for a Test/Test Group
	To Add an Action to a Test/Test Group
	To Specify Parameters for Actions in a Test/Test G...
	To View Parameters for Actions in a Test/Test Grou...
	To Specify the Limits for a Test
	To Remove an Action from a Test/Test Group

	To Save a Test Definition in a Library
	To Pass Results Between Tests/Test Groups
	To Share a Variable Among Actions in a Test/Test G...
	Controlling Switching During a Test/Test Group
	Overview of Creating a Switching Action
	To Create a Switching Action
	To Delete a Switching Action
	To Specify a Switching Path in a Switching Action
	To Modify a Switching Path in a Switching Action
	To Delete a Switching Path in a Switching Action

	Specifying Variations on Tests/Test Groups When Us...
	Overview
	To Specify a Test/Test Group’s Characteristics for...

	Using Test Limits
	To View the Limits for Tests in a Testplan
	To Modify the Limits for Tests in a Testplan

	Viewing the Test Execution Details
	Overview
	To View the Test Execution Details


	3 Working With Actions
	Things to Know Before Creating Actions
	How Do I Create Actions?
	Which Languages Can I Use to Create Actions?
	Improving the Reusability of Actions
	Designing for Reusability
	Documenting Your Actions
	Choosing Names for Actions
	Entering Descriptions for Actions
	Entering Descriptions for Parameters
	Choosing Keywords for Actions



	To Define an Action
	Using Parameters with Actions
	Types of Parameters Used With Actions
	To Add a Parameter to an Action
	To Modify a Parameter to an Action
	To Delete a Parameter to an Action

	Using Keywords with Actions
	To Add a Keyword to an Action
	To Delete a Keyword from an Action
	To Add a Master Keyword to the List
	To Delete a Master Keyword from the List

	Creating Actions in C
	Overview of the Process
	Writing C Actions
	Using Parameter Blocks With a C Compiler
	Using Parameter Blocks With a C++ Compiler

	Exception Handling in C Actions
	Using C Actions to Control Switching Paths
	Overview
	Using API Functions to Control Switching Paths
	Using States to Store Switching Data

	Adding Revision Control Information for Actions
	Example of Creating a C Action in a New DLL
	Defining the Action
	Specifying the Development Environment Options
	Setting the Path for Libraries
	Setting the Path for Include Files

	Creating a New DLL Project
	Specifying the Project Settings
	Writing Source Files for the Action Code
	Adding Source Files to the Project
	Updating Dependencies
	Verifying the Project’s Contents
	Compiling the Project
	Copying the DLL to Its Destination Directory
	Overview
	Creating a Custom Tool to Copy the DLL
	Using the Custom Tool to Copy the DLL


	Example of Defining a C Action
	Adding a C Action to an Existing DLL
	Debugging C Actions

	Creating Actions in HP VEE
	Restrictions on Parameter Usage in HP VEE
	Defining an HP VEE Action
	Example of an HP VEE Action
	Debugging HP VEE Actions
	Error Handling in HP VEE
	Controlling the Geometry of HP�VEE Windows
	Executing HP VEE Actions on a Remote System

	Creating Actions in National Instruments LabVIEW
	Related Files
	Restrictions on Parameter Passing
	Defining a National Instruments LabVIEW Action
	Example of a National Instruments LabVIEW Action
	Setting Interface Options for National Instruments...

	Creating Actions in HP BASIC for Windows
	Related Files
	Restrictions on Parameter Usage in HP BASIC for Wi...
	Defining an HP BASIC for Windows Action
	Creating an HP BASIC for Windows Server Program
	Example of an HP BASIC for Windows Action
	Debugging HP BASIC for Windows Actions


	4 Working with Switching Topology
	Defining the Switching Topology
	Overview
	Matching Physical Hardware to Logical Names
	Where Do the Names of Switching Paths Come From?
	Using Aliases to Simplify the Names of Switching P...
	When Should I Specify Wires?
	What Happens If a Node Has Multiple Names?
	How Do I Specify the Preferred Name for a Node?

	Defining the System Layer
	Defining the Fixture Layer
	Defining the UUT Layer
	Using the Switching Topology Editor
	To Create a Topology Layer
	Using Aliases
	To Add an Alias
	To Modify an Alias
	To Delete an Alias

	Using Wires
	To Add a Wire
	To Modify a Wire
	To Delete a Wire

	Using Modules
	To Add a Module
	To Modify a Module
	To Delete a Module

	Duplicating an Alias, Wire, or Module



	5 Working with Libraries, Datalogging, Symbol Tabl...
	Using Test & Action Libraries
	How Keywords Simplify Finding Items in Libraries
	Searching for Items in a Library
	Strategies for Searching Libraries
	Specifying the Search Path for Libraries
	To Specify System�Wide Search Paths for Libraries
	To Specify Testplan�Specific Search Paths for Libr...
	To Remove a Path from the List of Search Paths

	Using Search Paths to Improve Testplan Portability...

	Using Datalogging
	What Happens During Datalogging?
	What is the Format of Logged Data?
	Controlling How Datalogging Works
	To Set the Datalogging Options for an Entire Testp...
	To Set the Datalogging Options for an Individual T...
	To Select the Datalogging Format

	Using Datalogging with Q-STATS Programs
	To Set the Learning Feature & Pass Limits
	Restrictions on the Names of Tests

	Managing Datalogging Files

	Using Symbol Tables
	About Symbol Tables
	Predefined Symbols in the System Symbol Table
	How Symbols Are Defined in Flow Control Statements...
	Programmatically Interacting with Symbols
	To Examine the Symbols in a Symbol Table
	To Add a Symbol to a Symbol Table
	To Modify a Symbol in a Symbol Table
	To Delete a Symbol from a Symbol Table
	Using External Symbol Tables
	To Create an External Symbol Table
	To Link to an External Symbol Table
	To Remove a Link to an External Symbol Table


	Using Auditing
	To Document Testplans, Actions & Switching Topolog...
	To Document Tests
	To View or Print Auditing Information


	6 System Administration
	System Setup
	Specifying the Location of the System Topology Lay...
	Specifying the Default Variant for a New Testplan
	Setting Up an Operator or Automation Interface
	Overview
	Setting Up an Automation Interface to Start Automa...
	Starting an Automation Interface Created in Visual...
	Starting an Automation Interface Created in Visual...

	Setting Up Automatic Printing of Failure Tickets
	Specifying the Polling Interval for Hardware Handl...

	Setting Up the Auditing Features
	Controlling the Appearance of the Status List
	Controlling the Operation of the Revision Editor


	Directories and Files
	Standard Directories
	Standard File Extensions
	Initialization Files
	Recommended Locations for Files
	Managing DLLs
	How HP TestExec SL Searches for DLLs
	Situations That Can Cause Problems With DLLs
	Symptoms Associated with Loading the Wrong DLL
	Minimizing the Problems with DLLs

	Managing Temporary Files

	Controlling System Security
	Using the Default Security Settings
	User Groups
	System Resources
	Group Access Privileges

	Customizing Security Settings
	To Change a Password
	To Add a New User
	To Modify an Existing User
	To Delete an Existing User
	To Modify a User's Privileges
	To Add a New Group of Users
	To Modify an Existing Group of Users


	Adding Custom Tools to HP TestExec SL
	Syntax for Adding Custom Tools
	To Add Entries to the Tools Menu


	7 Working with VXIplug&play Drivers
	What is VXIplug&play?
	How Do HP TestExec SL & VXIplug&play Work Together...
	How Do Actions Control Instruments via VXIplug&pla...
	To Control a VXIplug&play Instrument from an Actio...
	Configuring HP�TestExec SL to Use VXIplug&play Ins...
	Creating the Action
	Using the Action in a Test

	Beyond VXIplug&play

	Index

